

ANL/MCS-TM-316

Report on FY11 Extensions to MeshKit and RGG

Mathematics and Computer Science Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-316

Report on FY11 Extensions to MeshKit and RGG

prepared by
Rajeev Jain
Mathematics and Computer Science Division, Argonne National Laboratory

September, 30, 2011

Introduction

One of the barriers to performing high-fidelity computational simulation of reactor core
phenomena is the production of good-quality geometry and mesh models required by these
simulations. Although a variety of geometry and meshing tools are available, they suffer from
shortcomings in usability, robustness, or generality which makes them difficult to apply to
reactor applications. The SHARP frameworks project is addressing these deficiencies by
developing a library of mesh generation algorithms, and tools based on that library. The library
is known as MeshKit, and one of the tools being developed is named RGG, for Reactor
Geometry (and mesh) Generator.

Over the past year, our meshing-related work was split between general design improvements
in MeshKit, enhancing RGG to run in parallel, and the application of RGG to several specific
reactor designs. These activities are described in this report.

2 MeshKit Design

Early development activities in MeshKit focused on adding raw meshing-related
capabilities. Capabilities were developed for surface (tri, quad) and volume (tet, hex) mesh
generation, for interacting with geometric models, and various other infrastructure used in the
meshing process (e.g. mesh smoothing, mesh-based geometry). Without a unifying design,
the various algorithms in MeshKit could not be used together without extra effort. During
FY11, we developed and implemented a unified MeshKit design which facilitates interactions
between the MeshKit algorithms.

The unifying theme behind this new design for MeshKit is that the meshing process
can be posed as a graph-based problem, with nodes of the graph representing a meshing-
related function and edges representing data dependencies between nodes. In a traditional
geometry- based meshing approach, the nodes might correspond to geometric vertices,
edges, faces, and regions. However, other mesh generation approaches can also be
described by graphs, with graph nodes representing other data concepts. For example, a
copy/move/merge meshing approach, like that supported by RGG, with nodes for generating
the geometry, then the mesh, for the different assembly types, nodes for copying assembly
types into the core lattice, and a single node for merging coincident vertices. After
implementation of the graph-based design into core MeshKit classes, the various algorithms
and tools in MeshKit were moved into the new design. After these changes, interactions
between the tools were much easier to implement. A complete description of the new MeshKit
design is beyond the scope of this report, but can be found in Ref. [1].

In FY11 we also developed a new, open-source all-quadrilateral meshing algorithm Jaal. This
method is based on combining triangles to form quadrilaterals, and has demonstrated good
robustness for a variety of geometric models. This algorithm is described in a forthcoming
paper at the International Meshing Roundtable conference [2].

3 RGG Enhancements

AssyGen was implemented in the new graph-based meshing approach, currently
under development in MeshKit. In the graph-based design after AssyGen operation, various
open source meshers such as triangle, CAMAL tet-mesher, Jaal quad-mesher and parallel tet-

mesher can be used to mesh the assembly geometry. The user interface and robustness of
the library-based meshing are still under development. Current work involves implementing
CoreGen in the new MeshKit design. Several other enhancements were made to RGG, based
either on user requests or deficiencies identified in the applications described in the next
section of this report:

• CoreGen support for geometric models: CoreGen was modified to allow generation
of geometric models of a core lattice, instead of just mesh models. The user input for
generating core geometry models is almost identical to that used for mesh models; the
new “ProblemType” keyword is used to specify if geometry or mesh is desired.

• Support for ACIS or OCC: RGG was used to further debug the port of the Common
Geometry Module (CGM) to the Open.CASCADE solid modeling engine. AssyGen and
CoreGen now support generation of models using either OCC or ACIS, depending on
how the version of CGM used by RGG is configured.

New keywords: New keywords “EdgeInterval” and “CreateSideSet” were introduced in the
AssyGen scripting language for specifying the interval on outer edges of the assembly
geometry and for specifying controls for sidesets creation, respectively. The
“CreateNeumannSet” keyword for CoreGen can be used to specify Neumann sets on top,
side, and/or bottom sides of the overall core mesh.

Earlier in the year, the capability was developed in MOAB to perform vertex merging in
parallel, using a small modification to the algorithm which matches shared inter-processor
interfaces in the mesh [3]. This capability also enabled the development of the parallel
CoreGen tool. The basic algorithm used in this tool can be summarized in five steps:

1. On each processor: read CoreGen input file, parse, and determine assembly copies
assigned to this processor based on a round-robin distribution.

2. Locally read assembly meshes for assemblies determined in step 1.

3. Perform assembly copy/move operations assigned to this processor.

4. Perform parallel merge.

5. Save output mesh.

The performance of parallel CoreGen was measured using a 1/6 VHTR core model
consisting of 56 assemblies. Meshes of 11M and 58M hexes were generated, on up to 56
processors of the ANL Fusion cluster computer. Table 1 summarizes the model details of this
model.

Table 2 shows the maximum value (among all processors) of wall clock time, memory
used, time to - load mesh files, copy/move mesh files, merge coincident nodes and save
mesh. It is observed that as the number of processors increases and the work gets distributed
the memory and time requirement for each sub-process decreases. The low speedup
obtained when using 8 processors is due to higher communication cost during the merge
operation and the fact that some processors have more than one mesh file loaded which
causes load imbalance. This imbalance is resolved when the number of processors is greater
than nA.

Table 1. VHTR 1/6 core model details. nA and nT are the number of assembly mesh files
and total number of assemblies forming the core, respectively.

#Elements, Volumes 58.9 M hexes, 5536

#nA, nT 12, 56

#Interval Axial (Z), Radial Direction 80, 72

Core Mesh File Size (GB) 6.52

Table 2. VHTR 1/6 core time and memory results

Procs
Walltime

(mins)

Max.
CPU
time

(mins)

Max.
Clock
time

(mins)

Max.
Memory

used (GB)

Max.
Load

mesh time
(mins)

Max.
Copy/

move time
(mins)

Max.
Merge
time

(mins)

Max.
Save
time

(mins)
1 215.3& 214.8& 215& 14.1& 0.25& 141.8& 70.48& 2.25&
8 181.9& 89.8& 181.9& 7.4& 0.1& 59.6& 28.29& 1.69&
16 20.18& 19.8& 20& 4.9& 0.018& 1.4& 17.62& 0.8&
32 2.9& 2.7& 2.8& 1.29& 0.018& 0.12& 2.34& 0.25&
56 1.23& 1.01& 1.11& 0.84& 0.018& 0.001& 0.8& 0.18&

Figure 1. Plots for maximum wall time (min) and maximum memory used by a processor (GB)

vs number of processors.

RGG Applications

VHTR 1/12, 1/6 and Full-Core Models

Figure 2 shows geometries of 1/12th (right) and 1/6th (left) VHTR core, picture at the
center is a close-up of the mesh output from the CoreGen tool. Figure 3 shows the full core
model generated using RGG tools. Moving from left to right the rectangle in red shows

zoomed view of the picture on the left. It must be noted that the blue outer covering of the
assemblies is an interstice mesh which is carefully created offline to match other assemblies

Figure 2. VHTR full-core: 23M hexes, 33k vols take 5.5 GB RAM and 30 min; 313
assemblies.

1/4th PWR Benchmark Reactor

The benchmark problem “MOX Fuel Loaded Small PWR Core” can be found on the website of
the Nuclear Reactor Analysis and Particle Transport surface of the core geometry and
zoomed view of three regions A, B and C. This was model is [9]. Figure 4 shows the top
created using the geometry feature of CoreGen program.

Figure. 1. VHTR 1/6th: 53M hexes takes 10.4GB RAM and 12 mins (left), closeup (center),
VHTR 1/12th (right).

Figure 5. 2D geometry of a 1/4 PWR benchmark reactor, 11k vols takes 0.4 GB RAM and 18
mins.

Full Core MONJU Reactor

STARCCM+ was used to visualize this full-core MONJU reactor model. The model and 715
assemblies that are individually meshed using the CUBIT mesh generation toolkit. This
resulting core is generated serially on a Linux workstation.

Figure. 4. MONJU reactor, full core model: 9.7M hexes, 99k vols takes 4.3GB RAM and 176
mins. 715 assemblies.

References

1. Tautges, T. J., Kraftcheck, J., Porter, Jim, Caceres, Alvaro, Grindeanu, Iulian,
Karpeev, Dmitry, Jain, Rajeev, Kim, Hong-Jun, Cai, Shengyong, Jackson, Steve, Hu,
Jiangtao, Smith, Brandon, Verma, Chaman, Slattery, Stuart, Wilson, Paul: MeshKit: A
Open-Source Library for Mesh Generation. Proceedings, SIAM Conference on
Computational Science & Engineering. SIAM, Reno, NV (2011),
http://trac.mcs.anl.gov/projects/fathom/wiki/MeshKit.

2. Verma, Chaman, Tautges, TimothyJ.: Jaal: Engineering a high quality all-quadrilateral
mesh generator. Presented at the International Meshing Roundtable, Paris, France
October 23 (2011).

3. Tautges, Timothy, J., Kraftcheck, Jason, Bertram, Nathan, Sachdeva,Vipin, Magerlein,
John: Mesh Interface Resolution and Ghost Exchange in a Parallel Mesh
Representation. Presented at the 26th IEEE International Parallel & Distributed
Processing Symposium, Shanghai, China. May 21 (2012).

4. Jain, Rajeev: RGG: A Tool to Generate Reactor Core Models. VHTR 4th Annual
Technical Review Meeting. Albuquerque, NM (2011).

5. Jain, Rajeev: RGG:A Tool to Generate Reactor Core Models. 11th National Congress
on Computational Mechanics. Minneapolis, Minnesota (2011).

6. Thomas, Justin, Jain, Rajeev: Integrating STAR-CD with Systems Analysis Code for
Nuclear Reactor Safety Simulations. 2011 STAR American Conference. , Chicago, IL
(2011).

7. Reactor Geometry (& Mesh) Generator (RGG),
http://trac.mcs.anl.gov/projects/fathom/wiki/rgg.

8. Tautges, T.J., Jain, Rajeev: Creating Geometry and Mesh Models for Nuclear Reactor
Core Geometries Using a Lattice Hierarchy-Based Approach. Engineering With
Computers. to appear, (2011).

9. Benchmark Problems in Reactor and Particle Transport Physics,
http://nurapt.kaist.ac.kr/benchmark/.

